Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Free Radic Biol Med ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38729452

Reactive oxygen species (ROS) are highly reactive and its accumulation causes oxidative damage to cells. Cells maintain survival upon mild oxidative stress with anti-oxidative systems, such as the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) system. On the other hand, upon severe oxidative stress, cells undergo regulated cell death, including apoptosis, for eliminating damaged cells. To execute efficient cell death, cells need to turn off the anti-oxidant systems, while triggering cell death. However, it remains unknown how cells orchestrate these two conflicting systems under excessive oxidative stress. Herein, we show that when cells are exposed to excessive oxidative damage, an E3 ubiquitin ligase Roquin-2 (also known as RC3H2) plays a key role in switching cell fate from survival to death by terminating activation of transforming growth factor-ß-activated kinase (TAK1), a positive regulator for Nrf2 activation. Roquin-2 interacted with TAK1 via four cysteine residues in TAK1 (C96, C302, C486, and C500) that are susceptible to oxidative stress and participate in oligomer formation via disulfide bonds, promoting K48-linked polyubiquitination and degradation of TAK1. Nrf2 was inactivated upon lethal oxidative stress in wild-type mouse embryonic fibroblast (MEF) cells, whereas it sustained activation and conferred resistance to Roquin-2 deficient cells, which was reversed by pharmacological or genetic inhibition of TAK1. These data demonstrate that in response to excessive ROS exposure, Roquin-2 promotes ubiquitination and degradation of TAK1 to suppress Nrf2 activation, and thereby contribute to an efficient cell death, providing insight into the pathogenesis of oxidative stress-related diseases, including cancer.

2.
Cells ; 13(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38667302

Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.


Dual Specificity Phosphatase 1 , Signal Transduction , Toll-Like Receptors , Ubiquitin-Protein Ligases , Ubiquitination , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Mice , Proteolysis , Immunity, Innate , p38 Mitogen-Activated Protein Kinases/metabolism , HEK293 Cells , Cytokines/metabolism
3.
J Immunol ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639584

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.

4.
Cell Death Discov ; 10(1): 74, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38346947

Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.

5.
J Toxicol Sci ; 49(1): 27-36, 2024.
Article En | MEDLINE | ID: mdl-38191191

trans-Fatty acids (TFAs) are unsaturated fatty acids harboring at least one carbon-carbon double bond in trans configuration, which are categorized into two groups according to their origin: industrial and ruminant TFAs, hereafter called iTFAs and rTFAs, respectively. Numerous epidemiological studies have shown a specific link of iTFAs to various diseases, such as cardiovascular and neurodegenerative diseases. However, there is little evidence for underlying mechanisms that can explain the specific toxicity of iTFAs, and how to mitigate their toxicity. Herein, we show that iTFAs, including elaidic acid (EA) and linoelaidic acid, but not rTFAs, facilitate apoptosis induced by doxorubicin (Dox), triggering DNA double-strand breaks. We previously established that EA promotes Dox-induced apoptosis by accelerating c-Jun N-terminal kinase (JNK) activation through mitochondrial reactive oxygen species (ROS) overproduction. Consistently, iTFAs specifically enhanced Dox-induced JNK activation. Furthermore, Dox-induced pro-apoptotic signaling by iTFAs was blocked in the presence of oleic acid (OA), the geometrical cis isomer of EA. These results demonstrate that iTFAs specifically exert their toxicity during DNA damage-induced apoptosis, which could be effectively suppressed by OA. Our study provides evidence for understanding the difference in toxic actions between TFA species, and for new strategies to prevent and combat TFA-related diseases.


Trans Fatty Acids , Trans Fatty Acids/toxicity , Apoptosis/genetics , Carbon , DNA Breaks, Double-Stranded , DNA Damage , Doxorubicin/toxicity
6.
Physiology (Bethesda) ; 39(2): 73-87, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38193763

Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.


Ferroptosis , Humans , Lipid Peroxidation
7.
Respir Med Case Rep ; 46: 101951, 2023.
Article En | MEDLINE | ID: mdl-38090378

A 72-year-old female presented with bilateral pulmonary nodules before undergoing surgery for hysteroptosis. Transbronchial biopsy did not lead to a definitive diagnosis. The right mass in the upper lobe was resected through video-assisted thoracic surgery. Pathological findings showed granulomatosis with polyangiitis. However, the patient was negative for serum proteinase 3-anti-neutrophil cytoplasmic antibody. Although the nodule in the left lower lobe progressed, the serum inflammatory reaction yielded negative results. Resection of the nodule in the left lower lobe revealed identical pathological findings with those of the right pulmonary mass. Following total hysterectomy for hysteroptosis, the pathological findings indicated granulomatosis with polyangiitis.

8.
Anticancer Res ; 43(11): 5107-5114, 2023 Nov.
Article En | MEDLINE | ID: mdl-37909984

BACKGROUND/AIM: The treatment of brain metastases in patients with non-small cell lung cancer (NSCLC) typically involves surgery, irradiation, and chemotherapy (single or combination therapy). However, the impact of these therapies on the survival of patients with NSCLC with multiple extrathoracic metastases has not yet been determined. Therefore, in the present study, we examined the prognostic effect of multimodal treatment for brain metastases in patients with NSCLC with multiple extrathoracic metastases in the absence of driver mutations. PATIENTS AND METHODS: Patients with NSCLC with multiple extrathoracic metastases (including at least one brain metastasis), who visited Saitama Medical Center, Saitama Medical University from January 1, 2010 to December 31, 2016, were enrolled in this study; follow-up was conducted until December 31, 2021. RESULTS: A total of 56 patients were enrolled, including 12 and 44 patients with single and multiple brain metastases, respectively. The median overall survival (OS) for all patients was 4.9 months, and did not differ significantly between patients with single and multiple brain metastases (3.0 vs. 4.9 months, respectively). The selection of locoregional treatment for brain metastases did not depend on Karnofsky performance status (p=0.0862). Among patients with multiple brain metastases, the OS for those who underwent craniotomy followed by whole brain radiation therapy (WBRT), those who received only WBRT, and those treated without locoregional therapy was 47.7, 3.9, and 15.9 months, respectively (p=0.00382). CONCLUSION: Surgical resection followed by radiation therapy is an effective treatment option for brain metastases in patients with multiple metastases. However, WBRT alone did not improve prognosis.


Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Combined Modality Therapy , Brain , Brain Neoplasms/therapy
9.
Proc Natl Acad Sci U S A ; 120(43): e2311282120, 2023 10 24.
Article En | MEDLINE | ID: mdl-37847732

Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.


Intracellular Signaling Peptides and Proteins , Neoplasms , Sequestosome-1 Protein/genetics , Lysosomes , Autophagy , Neoplasms/drug therapy , Neoplasms/genetics
10.
Free Radic Biol Med ; 204: 374-384, 2023 08 01.
Article En | MEDLINE | ID: mdl-37257700

Geometrical mono-trans isomers of arachidonic acid (mtAA) are endogenous products of free radical-induced cis-trans double bond isomerization occurring to natural fatty acids during cell metabolism, including lipid peroxidation (LPO). Very little is known about the functional roles of mtAA and in general on the effects of mono-trans isomers of polyunsaturated fatty acids (mtPUFA) in various types of programmed cell death, including ferroptosis. Using HT1080 and MEF cell cultures, supplemented with 20 µM PUFA (i.e., AA, EPA or DHA) and their mtPUFA congeners, ferroptosis occurred in the presence of RSL3 (a direct inhibitor of glutathione peroxidase 4) only with the PUFA in their natural cis configuration, whereas mtPUFA showed an anti-ferroptotic effect. By performing the fatty acid-based membrane lipidome analyses, substantial differences emerged in the membrane fatty acid remodeling of the two different cell fates. In particular, during ferroptosis mtPUFA formation and their incorporation, together with the enrichment of SFA, occurred. This opens new perspectives in the role of the membrane composition for a ferroptotic outcome. While pre-treatment with AA promoted cell death for treatment with H2O2 and RSL3, mtAA did not. Cell death by AA supplementation was suppressed also in the presence of either ferroptosis inhibitors, such as the lipophilic antioxidant ferrostatin-1, or NADPH oxidase (NOX) inhibitors, including diphenyleneiodonium chloride and apocynin. Our results confirm a more complex scenario for ferroptosis than actually believed. While LPO processes are active, the importance of environmental lipid levels, balance among SFA, MUFA and PUFA in lipid pools and formation of mtPUFA influence the membrane phospholipid turnover, with crucial effects in the occurrence of cell death by ferroptosis.


Ferroptosis , Lipid Peroxidation , Isomerism , Arachidonic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Fatty Acids/pharmacology , Fatty Acids, Unsaturated
11.
J Biol Chem ; 299(6): 104710, 2023 06.
Article En | MEDLINE | ID: mdl-37060999

Reactive sulfur species (RSS) have emerged as key regulators of protein quality control. However, the mechanisms by which RSS contribute to cellular processes are not fully understood. In this study, we identified a novel function of RSS in preventing parthanatos, a nonapoptotic form of cell death that is induced by poly (ADP-ribose) polymerase-1 and mediated by the aggresome-like induced structures (ALIS) composed of SQSTM1/p62. We found that sodium tetrasulfide (Na2S4), a donor of RSS, strongly suppressed oxidative stress-dependent ALIS formation and subsequent parthanatos. On the other hand, the inhibitors of the RSS-producing enzymes, such as 3-mercaptopyruvate sulfurtransferase and cystathionine γ-lyase, clearly enhanced ALIS formation and parthanatos. Interestingly, we found that Na2S4 activated heat shock factor 1 by promoting its dissociation from heat shock protein 90, leading to accelerated transcription of HSP70. Considering that the genetic deletion of HSP70 allowed the enhanced ALIS formation, these findings suggest that RSS prevent parthanatos by specifically suppressing ALIS formation through induction of HSP70. Taken together, our results demonstrate a novel mechanism by which RSS prevent cell death, as well as a novel physiological role of RSS in contributing to protein quality control through HSP70 induction, which may lead to better understanding of the bioactivity of RSS.


Parthanatos , Sequestosome-1 Protein/metabolism , Oxidative Stress , Cell Death , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Sulfur/metabolism
12.
Sci Rep ; 13(1): 5883, 2023 04 11.
Article En | MEDLINE | ID: mdl-37041254

trans-Fatty acids (TFAs) are unsaturated fatty acids containing at least one carbon-carbon double bond in trans configuration, which are classified into two groups according to their food source: industrial TFAs (iTFAs) and ruminant TFAs (rTFAs). Previous epidemiological evidence has demonstrated a preferential association of iTFAs, rather than rTFAs, with various diseases including cardiovascular diseases. However, it is still unknown how iTFAs exert their specific toxicity and what effective treatments are available to mitigate their toxicity. Here, we performed a comprehensive toxicological assessment of TFAs based on the toxicity mechanism that we established previously. We found that iTFAs including elaidic acid (EA), but not other types of fatty acids including rTFAs, had a strong pro-apoptotic effect upon treatment of extracellular ATP, a damage-associated molecular pattern that induces apoptosis through the apoptosis signal-regulating kinase 1 (ASK1)-p38 MAP kinase pathway. We also found that polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), potently suppressed EA-dependent increase in ASK1 activation and apoptosis. These results demonstrate that iTFAs specifically exert toxicity by targeting ASK1, and that PUFAs serve as their effective suppressor. Our study provides a molecular basis for risk assessment of foods, and for new prevention and treatment strategies for TFA-related diseases.


Trans Fatty Acids , Fatty Acids , Carbon
13.
Curr Biol ; 33(7): 1282-1294.e5, 2023 04 10.
Article En | MEDLINE | ID: mdl-36898371

The ongoing metabolic and microbicidal pathways that support and protect cellular life generate potentially damaging reactive oxygen species (ROS). To counteract damage, cells express peroxidases, which are antioxidant enzymes that catalyze the reduction of oxidized biomolecules. Glutathione peroxidase 4 (GPX4) is the major hydroperoxidase specifically responsible for reducing lipid peroxides; this homeostatic mechanism is essential, and its inhibition causes a unique type of lytic cell death, ferroptosis. The mechanism(s) that lead to cell lysis in ferroptosis, however, are unclear. We report that the lipid peroxides formed during ferroptosis accumulate preferentially at the plasma membrane. Oxidation of surface membrane lipids increased tension on the plasma membrane and led to the activation of Piezo1 and TRP channels. Oxidized membranes thus became permeable to cations, ultimately leading to the gain of cellular Na+ and Ca2+ concomitant with loss of K+. These effects were reduced by deletion of Piezo1 and completely inhibited by blocking cation channel conductance with ruthenium red or 2-aminoethoxydiphenyl borate (2-APB). We also found that the oxidation of lipids depressed the activity of the Na+/K+-ATPase, exacerbating the dissipation of monovalent cation gradients. Preventing the changes in cation content attenuated ferroptosis. Altogether, our study establishes that increased membrane permeability to cations is a critical step in the execution of ferroptosis and identifies Piezo1, TRP channels, and the Na+/K+-ATPase as targets/effectors of this type of cell death.


Ferroptosis , Lipid Peroxides , Cations , Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Lipid Peroxides/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Membrane Proteins/metabolism
14.
J Immunol ; 210(6): 795-806, 2023 03 15.
Article En | MEDLINE | ID: mdl-36744909

Gefitinib (GF), the tyrosine kinase inhibitor (TKI) targeting epidermal growth factor receptor, initiates lung inflammation through the NLR family pyrin domain containing 3 (NLRP3) inflammasome. However, the molecular targets and mechanisms underlying the inflammatory action of GF remain unknown. In this study, we identified mitochondrial Src family kinases (mSFKs) as key determinants of GF-induced NLRP3 inflammasome activation. Comprehensive analysis of the TKIs revealed that all TKIs we tested act as potent agonists for the NLRP3 inflammasome in human monocytic THP-1 cells and bone marrow-derived macrophages. Moreover, these TKIs share a common off-target activity against the mSFKs, such as c-Src, Fgr, and Fyn. Interestingly, loss of each kinase spontaneously stimulated the NLRP3 inflammasome activation in THP-1 cells. These results together suggest that NLRP3 senses hypoactivity of the mSFKs that is responsible for mitochondrial dysfunction. Thus, our findings demonstrate a mechanistic link between the NLRP3 inflammasome and mSFKs, which, to our knowledge, provides insights into a novel molecular basis and cellular function of the NLRP3 inflammasome.


Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , src-Family Kinases , Cells, Cultured , Mitochondria/metabolism
15.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article En | MEDLINE | ID: mdl-36077459

Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.


AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Cisplatin , DNA Damage , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Apoptosis , Cell Line, Tumor , Cisplatin/metabolism , Cisplatin/pharmacology , Humans , Phosphorylation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
J Antibiot (Tokyo) ; 75(1): 29-39, 2022 01.
Article En | MEDLINE | ID: mdl-34824374

Polymyxin B (PMB) is an essential antibiotic active against multidrug-resistant bacteria, such as multidrug-resistant Pseudomonas aeruginosa (MDRP). However, the clinical use of PMB is limited, because PMB causes serious side effects, such as nephrotoxicity and neurotoxicity, probably due to its cytotoxic activity. However, cytotoxic mechanisms of PMB are poorly understood. In this study, we found that macrophages are particularly sensitive to PMB, when compared with other types of cells, including fibroblasts and proximal tubule (PT) cells. Of note, PMB-induced necrosis of macrophages allowed passive release of high mobility group box 1 (HMGB1). Moreover, upon exposure of PMB to macrophages, the innate immune system mediated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome that promotes the release of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) was stimulated. Interestingly, PMB-induced IL-1ß release occurred in the absence of the pore-forming protein gasdermin D (GSDMD), which supports the idea that PMB causes plasma membrane rupture accompanying necrosis. Emerging evidence has suggested that both HMGB1 and IL-1ß released from macrophages contribute to excessive inflammation that promote pathogenesis of various diseases, including nephrotoxicity and neurotoxicity. Therefore, these biochemical properties of PMB in macrophages may be associated with the induction of the adverse organ toxicity, which provides novel insights into the mechanisms of PMB-related side effects.


Anti-Bacterial Agents/toxicity , Inflammation/chemically induced , Irritants/toxicity , Macrophages/drug effects , Polymyxin B/toxicity , Cell Line , Cell Membrane/pathology , Fibroblasts/drug effects , HMGB1 Protein/genetics , Humans , Immunity, Innate , Inflammasomes , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Necrosis , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism
17.
Biol Pharm Bull ; 44(10): 1349-1356, 2021.
Article En | MEDLINE | ID: mdl-34602541

trans-Fatty acids (TFAs) are food-derived fatty acids that possess one or more trans double bonds between carbon atoms. Compelling epidemiological and clinical evidence has demonstrated the association of TFA consumption with various diseases, such as cardiovascular diseases, and neurodegenerative diseases. However, the underlying etiology is poorly understood since the mechanisms of action of TFAs remain to be clarified. Previous studies have shown that single treatment with TFAs induce inflammation and cell death, but to a much lesser extent than saturated fatty acids (SFAs) that are well established as a risk factor for diseases linked with inflammation and cell death, which cannot explain the particularly higher association of TFAs with atherosclerosis than SFAs. In our series of studies, we have established the role of TFAs as an enhancer of inflammation and cell death. We found that pretreatment with TFAs strongly promoted apoptosis induced by either extracellular ATP, one of the damage-associated molecular patterns (DAMPs) leaked from damaged cells, or DNA damaging-agents, including doxorubicin and cisplatin, thorough enhancing activation of the stress-responsive mitogen-activated protein (MAP) kinase p38/c-jun N-terminal kinase (JNK) pathways; pretreatment with SFAs or cis isomers of TFAs had only minor or no effect, suggesting the uniqueness of the pro-apoptotic role of TFAs among fatty acids. Our findings will provide an insight into understanding of the pathogenesis mechanisms, and open up a new avenue for developing prevention strategies and therapies for TFA-related diseases.


Dietary Fats/adverse effects , Inflammation/immunology , Trans Fatty Acids/adverse effects , Alarmins/metabolism , Apoptosis/immunology , Humans , Inflammation/metabolism
18.
J Thorac Dis ; 13(8): 4903-4914, 2021 Aug.
Article En | MEDLINE | ID: mdl-34527329

BACKGROUND: Immune-checkpoint inhibitors (ICIs) have been increasingly used for non-small cell lung cancer (NSCLC) treatment in recent years. Although insufficient, the rate of programmed death-ligand 1 expression has been adopted as a predictor of ICI efficacy. We evaluated tumor growth rate as a clinically easy-to-use predictor of the therapeutic effect of ICIs. METHODS: This study is a single-institution retrospective study in Japan. NSCLC patients treated with nivolumab, pembrolizumab, or atezolizumab at Saitama Medical Center from January 1, 2016 to December 31, 2018 were enrolled, and followed until December 31, 2020. We defined and calculated the initial rapidity of tumor progression (IRP) as: the increase in the sum of the diameters of intrathoracic tumors and lymph nodes on two series of chest computed tomography (CT) scans (one obtained at an initial checkup and the other obtained immediately before the first treatment) divided by the number of days between these CT scans. Two coefficients were calculated: the maximal information coefficient (MIC) between IRP and time to treatment failure (TTF) using the Python package with minepy library, and the Spearman's rank correlation coefficient. RESULTS: A total of 55 patients (median age, 70 years; 47 men) were enrolled. The median TTF with ICIs was 126 days, and four patients continued to receive ICI treatment at the end of the follow-up. The MIC between IRP and TTF was 0.302 with weak correlation, and the Spearman's rank correlation coefficient was -0.347 (P=0.00938). CONCLUSIONS: The initial tumor growth rate had a negative linear correlation with the therapeutic effect of ICIs.

19.
Int J Mol Sci ; 22(11)2021 May 28.
Article En | MEDLINE | ID: mdl-34071450

Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor ß-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1.


Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Protein Ligases/metabolism , Adolescent , Animals , Apoptosis/drug effects , Caspase 8/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Immunoblotting , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Phosphorylation , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics
20.
Lab Chip ; 21(14): 2643-2657, 2021 07 13.
Article En | MEDLINE | ID: mdl-34132291

Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.


Biosensing Techniques , Receptors, Odorant , Odorants , Receptors, Odorant/genetics
...